Manchester lab develop more sustainable and rapid route to future medicines

Researchers at The University of Manchester have developed a new powerful and sustainable method of combining enzymes found in nature with non-toxic synthetic catalysts to deliver important chemical building blocks needed for the production of pharmaceuticals as well as other valuable chemicals.

New research published today in Nature communications describes the use of natural enzymes and earth-abundant and non-toxic transition metal-catalysts to forge organic molecules, creating what is known as an amide bond, in a more efficient and sustainable manner.

Amide bonds are very important both in natural and non-natural molecules. All living organisms are made up of proteins that are held together by amide bonds which link carbon and nitrogen atoms of amino acid building blocks. Amide bonds are also present in many important pharmaceuticals that help to keep the population healthy, agrochemicals that increase crop yields and materials such as textiles.

Traditional chemical processes used to create amide bonds are unsustainable, rely on non-renewable ingredients, harmful and wasteful reagents, along with dangerous solvents, all of which lead to difficulties in purification and waste processing. To overcome these problems a team of scientists from the University of Manchester created a new method for combining natural and synthetic catalysts to overcome these issues. Read more